# The Persistence of Disadvantages: Theory and Experiment 

Nishtha Sharma*


#### Abstract

Many economic situations involve contests for resources, such as winning prizes and earning bonuses. The likelihood of success in such contests is often skewed, favouring some competitors while putting others at a disadvantage. I study the strategic interaction between an advantaged and a disadvantaged competitor in a repeated contest where winning can help overcome the initial disadvantage. Theoretically, the competition for advantage increases effort by both competitors, but that the advantaged competitor increases effort more than the disadvantaged competitor. As a result, the disadvantaged competitor is even less likely to win when they have the potential to overcome their disadvantage, and the initial disadvantage is persistent. Evidence from a laboratory experiment supports these theoretical predictions.


Keywords: Contest, Disadvantage, Dynamic hierarchies, Laboratory Experiment JEL Codes: C72, C73, C92, D63, D72, J15, J71

[^0]In competitive economic arenas, such as job markets, admissions processes, sports, and political races, certain participants face disadvantages that reduce their chances of success. These disadvantages can stem from causes such as lower ability or confidence, resource access, neighborhood or university affiliation, or identity-based discrimination. While it is widely believed that the initially disadvantaged competitors can work hard to level the playing field or even gain an advantage ${ }^{1}$, underdog wins and advantage reversals remain rare occurrences. The initially advantaged individuals and entities tend to consistently thrive over extended periods in business, sports, politics, and labour markets (Bertrand and Duflo, 2017). In this paper, I use theory and experiment to examine why disadvantages persist even when they are not fixed, and the disadvantaged competitor can overcome them by initial success.

Consider two researchers, Alex and Betty competing for a prestigious grant. Assume that Alex is more likely to win the grant for a similar merit of application due to a more prestigious university affiliation. If Betty wins despite the disadvantage, creating a track record of winning grants can help her overcome it for future applications. The possibility of overcoming the disadvantage might encourage Betty to try harder to win the initial grant. However, it may also encourage Alex to resist losing his advantage and reduce Betty's chances of overcoming her disadvantage. Whether a disadvantage decline is realized depends on whose incentive and reaction to the possibility of a disadvantage decline is greater. If Alex increases his effort in grant application more than Betty due to the threat of losing his advantage, then he is even more likely to win the initial grant and Betty's chance to overcome disadvantage will not materialize. The possibility of a disadvantage decline may not be sufficient for leveling the playing field between Alex and Betty. I study such repeated contests in this paper and examine the behavior of advantaged and disadvantaged competitors to study the dynamics of disadvantages.

I model the competition between an advantaged player A and a disadvantaged player B as a two-period contest where both players' likelihood of winning increases in their relative contest expenditure or effort. Player A's effort is multiplied by a factor greater than one, so B has a lower chance of winning even if both players exert equal effort. I assume an exogenously given initial advantage in favor of A. It remains constant in the fixed disadvantage scenario. For the flexible disadvantage scenario, I examine the effect of both reducible (B's disadvantage reduces upon winning) and reversible disadvantages ( B becomes advantaged in the second period upon winning in the first period). Flexible advantages can impact the players' effort choices in the initial period
${ }^{1}$ For instance, the recent evidence on the dynamics of gender discrimination suggests that after overcoming initial prejudice, women may experience preferential treatment over men (Bohren et al., 2019; Mengel et al., 2019; Ayalew et al., 2018).
depending on how much they affect the structure of the second-period contest and how much the players care about their payoffs in the second period, i.e., their time preference for the future.

The model yields two main predictions. Firstly, when B can reduce or reverse their disadvantage by winning, both players exert more effort in the initial contest than when the disadvantage is fixed. Secondly, unless A has a sufficiently lower time preference for the future than B, the increase in A's effort to preserve the advantage is greater than the increase in B's effort to overcome the disadvantage ${ }^{2}$. B exerts higher costly efforts under a flexible disadvantage and yet becomes even less likely to win in equilibrium than when the disadvantage is fixed. As a result, the initial inequality between players often persists even when a reversal or reduction is possible. ${ }^{3}$

The intuition behind this result is that reducible and reversible advantages influence the effort players exert in the second period, depending on who wins in the first period. If A wins, then the second-period contest remains asymmetric. As a result, B expends less due to lower marginal productivity of expenditure, and A also spends less as the best response. However, when B wins, the advantage declines or reverses. In this case, A's and B's effectiveness of effort become similar, and the contest becomes symmetric, which induces a higher effort from both players. Hence, in addition to the incentive that emerges from preserving advantage (similar to B's incentive of overcoming disadvantage), A also has the incentive to protect asymmetry to reach the low effort-inducing equilibrium in the second period, which B lacks.

I test the theoretical predictions of the model using data from a laboratory experiment. Subjects make bidding decisions (a proxy for effort choices) to influence their likelihood of winning in repeated contests. Types A (advantaged) and B (disadvantaged) are randomly assigned, and then subjects are randomly and anonymously matched into pairs of A and B. Each unit of A's bid is multiplied by three, while B's bid is not multiplied to determine their likelihood of winning. A's multiplier remains the same under the fixed advantage treatment, reduces to one under the reducible advantage treatment, and reverses such that $B$ gets a multiplier of two under the reversible advantage treatment. I also vary A's time preference by changing the weight of their second-period payoff under the fixed and reducible advantage cases.

The experimental data confirm that both players choose higher effort bids when the

[^1]initial advantage can decline or reverse than when it is fixed. However, the increase in effort bids is significantly higher for the advantaged player when both players have equal (time) preference for the second period under reversible advantage and higher but not significantly under reducible advantage. Interestingly, contrary to the theoretical prediction, the threat of becoming disadvantaged from advantaged dominates even more the opportunity to become advantaged from disadvantaged than the threat or opportunity of reaching a level-playing field. This suggests that there may be a behavioral bias towards maintaining advantageous status quo or shifting standards of fairness associated with becoming disadvantaged from initially advantaged.

The result flips for the special case when A's total payoff has a sufficiently lower weight on the second-period payoff than B's. In the general case of equal weights on the second-period payoffs for A and B, the disadvantaged players have a significantly lower frequency of winning when they can overcome the initial disadvantage by winning. As a result, there is a small chance that disadvantages are overcome even under the flexible cases (both reducible and reversible). The empirical findings also suggest that social preferences such as inequity aversion do not play an important role in influencing people's behavior in such competitive settings. The advantaged subjects do not aid the process of reducing inequality; instead resist it to keep their advantage. Moreover, disadvantaged subjects do not try to overcome the disadvantage harder than to gain an advantage (reducible versus reversible cases). Finally, I also find evidence of gender differences in contest expenditure with men bidding significantly higher than women.

This paper contributes to our understanding of the dynamic process of moving from inequality to equality in competitive settings, focusing on the competitors' reactions. Prior research has examined how competitors respond to advantages and disadvantages in static environments or dynamic contests characterized by fixed disadvantages but has not explored their responses to flexible disadvantages (see Hillman and Riley (1989); Gradstein (1995); Corchón (2000); Cornes and Hartley (2005) for studies on static contests with disadvantages, and (Cairns, 1989; Leininger and Yang, 1994; McBride and Skaperdas, 2006; Wirl, 1994; Garfinkel and Skaperdas, 2000; Skaperdas and Syropoulos, 1996) for dynamic contests with fixed disadvantages, as well as Konrad (2009); Dechenaux et al. (2015); Chowdhury et al. (2023) for comprehensive surveys on contest theory and experiments). I build on this research by examining competitors' behavior in scenarios with flexible disadvantages such as their track record of success in comparison to fixed disadvantages such as institutional or legal barriers. Understanding these dynamics is pivotal for unraveling why disadvantages often persist and determining whether policy interventions remain necessary, even when change is possible.

The paper also contributes to the large literature on asymmetric contests and
optimal contest design. The existing literature has primarily shown that because asymmetry reduces expenditure in contests, the optimal contest design to maximize total expenditure or efforts of the players involves making contests as symmetric as possible by compensating for asymmetries in players' cost, valuation, the productivity of effort, endowments (Brown, 2011; Che and Gale, 2003; Epstein et al., 2011; Franke et al., 2018, 2013; Kirkegaard, 2012; Nti, 2004). Moreover, some studies show that the incentive to reveal information about players' strengths depends on whether it creates higher or lower beliefs about symmetry between players (Denter et al., 2022; Fu and Wu, 2022; Kubitz, 2023).

However, when contestants have to compete repeatedly, I show that when a contest is biased in favor of one player, then creating the threat of losing advantage and the opportunity of overcoming disadvantage by winning can generate even higher effort from both players than in a symmetric contest. For instance, if a manager of an internship program wants to incentivize interns' efforts, it may be optimal to let them compete with the possibility of overcoming their initial disadvantages by winning. The total effort would be even higher when interns compete for prizes and advantages. The manager might treat some interns more favorably than others and create competition for manager's favoritism in addition to interns' competitive bonus inducing higher efforts, showing that discrimination in dynamic competitive settings may be a strategic choice rather than due to generally believed non-strategic taste or belief-based reasons (Fang and Moro, 2010).

While the framework I discuss applies to many contexts involving repeated contests between players of asymmetric strengths, it particularly contributes to our understanding of the economics of discrimination. Relating with the conventional taste-based and statistical models of discrimination (Becker, 1957; Phelps, 1972; Aigner and Cain, 1977), I highlight the inadequacy of simply relying on evidence that belief-based discrimination against disadvantaged communities declines after their initial success (Beaman et al., 2009; Bohren et al., 2019; Fryer Jr, 2007; Groot and Van Den Brink, 1996; Lewis, 1986; Mengel et al., 2019). While most of this literature is focused on the source of discrimination and the behavior of the discriminator, I abstract away from it and focus on the behavior of competitors who make economic choices in such environments. I argue that the possibility of overcoming discrimination may not necessarily materialize in equilibrium, suggesting that external policy interventions may be needed to mute competition between unequal players (Fang et al., 2020) or address the initial disadvantage unconditionally. ${ }^{4}$

[^2]Furthermore, the competition for advantages described in this paper is closely related to the stratification economics approach to understanding inequality due to Darity et al. (2005) and reviewed in (Darity Jr, 2022). ${ }^{5}$ My approach is similar in that the starting point is the existence of disparity, and the persistence of disparity is not due to an innate characteristic of disadvantaged people. However, I differ in that the stratification economics literature explains the persistence of inequality through the cultural transmission of advantages among the advantaged, which is a relatively passive process. In contrast, I show that advantaged individuals actively choose to expend resources to preserve their advantage due to the incentives that emerge from the competition and the behavioral response to becoming disadvantaged from advantaged.

The rest of the paper is structured as follows. Section I presents the model of reducible and reversible disadvantages while allowing for heterogeneity in future concerns among the advantaged and disadvantaged competitors and gathers the main theoretical results. Section II describes the experimental design to test the theoretical predictions. Section III presents empirical findings based on the laboratory experiment. Section IV concludes with a summary of results and a discussion of implications.

## 1 Theoretical Model and Predictions

Below, I describe a repeated contest game between an advantaged and a disadvantaged player. The framework allows a comparison of contests where the outcome of the first contest causes a lower, reversed, or no change in the players' advantage and disadvantage for the second-period contest.

Players: Two players, $i \in\{A, B\}$, compete for a uniform prize of value V in two periods, $t \in\{1,2\}$. Player $i$ makes an expenditure of $e_{t}^{i}$ to influence their probability of winning, $p_{t}^{i}$ in period $t . e_{t}^{i}$ can be interpreted as resource expenditure or effort of player $i$ in period $t$. Players' utilities in period $t$ are denoted by $U_{t}^{i}$ and equal $p_{t}^{i} V-e_{t}^{i}$, $i \in\{A, B\}^{6}$. Players' aggregate utilities are given by $U^{i}=\Sigma_{t=1}^{2} \beta_{t-1}^{i} U_{t}^{i}$, where $\beta^{i} \geq 0$ is player $i^{\prime}$ 's time preference for future. Note that I allow players A and B to have different time preference parameters based on the global evidence of systematic heterogeneity in time preference based on identity such as gender, nationality, and age (Falk et al., 2018). Moreover, time preference can be greater than one such that period 2 represents an aggregated future which may be considered more important than the present.
gender roles and stereotypes reduces sexist attitudes among students and their families.
${ }^{5}$ I reinterpret players A and B as groups A and B , and $\beta$ as in-group welfare concern parameter.
${ }^{6}$ Under the effort interpretation of $e_{t}^{i}$, I assume that the marginal cost of effort is constant and equal to one for ease of exposition. I discuss the case of convex costs below, which does not change the model's qualitative predictions.

Players have different productivities of effort denoted by $\alpha_{t}^{i} \geq 1$ for each player $i \in\{A, B\}$ in each period $t \in\{1,2\}$. The contest success function (CSF) maps players' efforts and productivities of effort into their probability of winning in each period $t$ given by $p_{t}^{i}$ for $i, j \in\{A, B\}$. Without loss of generality, let $\alpha_{1}^{A}>\alpha_{1}^{B}$, making A the initially advantaged player. I denote A's advantage and B's disadvantage by $f_{t} \equiv \alpha_{t}^{A} / \alpha_{t}^{B}$, which reflects their probability of winning if they exert equal efforts. I use the Tullock lottery contest success function to model competition between players of asymmetric productivities of effort as follows.

$$
\left(p_{t}^{A}, p_{t}^{B}\right)= \begin{cases}\left(\frac{f_{t} e_{t}^{A}}{f_{t} e_{t}^{A}+e_{t}^{B}}, \frac{e_{t}^{B}}{f_{t} e_{t}^{A}+e_{t}^{B}}\right) & \text { if } \max \left\{e_{t}^{A}, e_{t}^{B}\right\}>0  \tag{1}\\ \left(\frac{f_{t}}{f_{t}+1}, \frac{1}{f_{t}+1}\right) & \text { if } e_{t}^{A}=e_{t}^{B}=0\end{cases}
$$

Choice of Contest Success Function: The ratio functional form is the only contest success function that can be derived by all four types of theoretical foundations (stochastic, axiomatic, optimality, and microfoundation), and is the most used functional form in applications (Jia et al., 2013). Further, I assume risk-neutral players as it has been shown that the equilibrium outcome of contests is independent of the contestants' risk aversion (Skaperdas and Gan, 1995). To ensure that players' probability of winning is not affected by the unit of measure of resources or efforts, I assume that the CSF is homogeneous of degree zero. The Tullock contest function is the only functional form which is homogeneous of degree zero under certain assumptions (Clark and Riis, 1998; Skaperdas and Syropoulos, 1996; Tullock, 1980).

Change in Advantage: Depending on the source of the disadvantage, player B may or may not overcome it by winning. Case 1 (fixed disadvantage) concerns situations where the source of disadvantage is fixed, such as ability, which does not change regardless of who wins implying $f_{2}=f_{1}$. Case 2 (reducible advantage) concerns situations where winning can reduce $\mathrm{B}^{\prime}$ 's disadvantage, such as belief-based discrimination, which implies $f_{2} \in\left[1, f_{1}\right)$ if B wins and $f_{2}=f_{1}$ if A wins. Finally, case 3 (reversible advantage) concerns sources such as incumbency advantage where winning can reverse B's initial disadvantage due to which, $f_{2} \in\left(f_{1}, f_{1}^{-1}\right)$ if B wins and $f_{2}=f_{1}$ if A wins.

Equilibrium: Players A and B choose efforts to maximize their expected utilities in each period. As the outcome of period 1 affects the level of advantage in period 2, I solve the game using backward induction to find the subgame perfect Nash Equilibrium. The game ends in period two and the players play it as a one-shot contest game which
generates equilibrium efforts and winning probabilities:

$$
\begin{equation*}
e_{2}^{A}=e_{2}^{B}=\frac{f_{2}}{\left(f_{2}+1\right)^{2}} V, \tag{2}
\end{equation*}
$$

Equilibrium probabilities of winning:

$$
\begin{equation*}
p_{2}^{A}=\frac{f_{2}}{f_{2}+1}, p_{2}^{B}=\frac{1}{f_{2}+1}, \tag{3}
\end{equation*}
$$

Equilibrium utilities:

$$
\begin{equation*}
U_{2}^{A}=\frac{f_{2}^{2}}{\left(f_{2}+1\right)^{2}} V, \quad U_{2}^{B}=\frac{1}{\left(f_{2}+1\right)^{2}} V \tag{4}
\end{equation*}
$$

Equation 2 leads to the following lemma, which is also a stylized result in the literature on contests.

## Lemma 1.

In the second period, the advantaged player $A$ and the disadvantaged player B exert equal efforts, which is decreasing in the second-period level of (dis)advantage $f_{2}$.

Lemma 1 asserts that both players exert equal effort, which decreases as A's secondperiod advantage increases. The second period is the final period and is comparable to a one-shot contest. Prior research (reviewed in Chowdhury et al. (2023)) has already established that in a one-shot contest, the players' efforts are equal and decrease as the level of asymmetry increases. The greater the asymmetry, the lower the equilibrium effort that each player exerts. This is because the disadvantaged player has lower productivity of effort and therefore chooses to exert less effort. Consequently, the advantaged player's best response is also to exert less effort, as they do not need to exert high effort to win due to their advantage. However, if the contest becomes symmetrical, with both players having similar productivity of effort, then both A and B have the incentive to put in more effort to win the close competition.

In the first period, players consider the impact of the first-period outcome on the second-period advantage and maximize their expected utilities given by,

$$
\begin{align*}
& U_{1}^{A}\left(e_{1}^{A}, e_{1}^{B}\right)=\frac{f_{1} e_{1}^{A}}{f_{1} e_{1}^{A}+e_{1}^{B}} V_{A}-e_{1}^{A}  \tag{5}\\
& U_{1}^{B}\left(e_{1}^{A}, e_{1}^{B}\right)=\frac{e_{1}^{B}}{f_{1} e_{1}^{A}+e_{1}^{B}} V_{B}-e_{1}^{B} \tag{6}
\end{align*}
$$

The prize of the contest, V , is uniform for each player in period one. However, the
possibility of preserving advantage and overcoming disadvantage creates additional future benefits from winning for the players, reflected in $V_{A}$ and $V_{B}$, respectively (as described in equation (10)). $V_{i}$ represents the difference in the ex-ante expected utility of player $i$ if they win in period 1 compared to if they lose in period 1 , where $i \in\{A, B\}$. When players have a positive time preference for the future, they choose their first-period efforts to maximize their expected utility from the current prize and the future benefits from winning. Solving the best response functions based on equations (4) and (5) generates the following equilibrium outcome in period 1 :
Equilibrium efforts:

$$
\begin{equation*}
e_{1}^{A}=\frac{f_{1} V_{A}^{2} V_{B}}{\left(f_{1} V_{A}+V_{B}\right)^{2}}, \quad e_{1}^{B}=\frac{f_{1} V_{B}^{2} V_{A}}{\left(f_{1} V_{A}+V_{B}\right)^{2}} \tag{7}
\end{equation*}
$$

Equilibrium probabilities of winning:

$$
\begin{equation*}
p_{1}^{A}=\frac{f_{1} V_{A}}{f_{1} V_{A}+V_{B}}, \quad p_{2}^{B}=\frac{V_{B}}{f_{1} V_{A}+V_{B}} \tag{8}
\end{equation*}
$$

Equilibrium expected utilities:

$$
\begin{equation*}
U_{1}^{A}=\frac{f_{1} V_{A}}{f_{1} V_{A}+V_{B}}\left[V-\frac{f_{1} V_{A} V_{B}}{f_{1} V_{A}+V_{B}}\right], \quad U_{1}^{B}=\frac{V_{B}}{f_{1} V_{A}+V_{B}}\left[V-\frac{f_{1} V_{A} V_{B}}{f_{1} V_{A}+V_{B}}\right] \tag{9}
\end{equation*}
$$

where,

$$
\begin{equation*}
V_{A}=\left[1+\beta^{A}\left(\frac{f_{1}^{2}}{\left(f_{1}+1\right)^{2}}-\frac{\left(f_{2}\right)^{2}}{\left(f_{2}+1\right)^{2}}\right)\right] V, \quad V_{B}=\left[1+\beta^{B}\left(\frac{1}{\left(f_{2}+1\right)^{2}}-\frac{1}{\left(f_{1}+1\right)^{2}}\right)\right] V \tag{10}
\end{equation*}
$$

In the case of fixed disadvantage, $f_{2}=f_{1}$ regardless of who wins. Period 1 outcome has no effect on expected future utility from period 2 for either player. Therefore, $V_{A}=V_{B}=V$ under a fixed disadvantage, and the first-period efforts are chosen similar to the second period or a one-shot contest, i.e., $e_{1}^{A}=e_{1}^{B}=\frac{f_{1}}{\left(f_{1}+1\right)^{2}} V$ in this case.

However, in the cases of reducible or reversible advantage, the incentive to preserve the advantage and reduce or reverse the disadvantage causes $V_{i}>V \forall i \in\{A, B\}$. In addition to the exogenously given per-period prize V and time preference parameters $\beta^{i}$, the value from winning in the first period is composed of two main components.

First, consider the difference in advantage or probability of winning for each player, given equal efforts, if they win versus if they lose. For player $A$, this difference is calculated using $\frac{f_{1}}{f_{1}+1}-\frac{f_{2}}{f_{2}+1}$, and for player $B$, it is calculated using $\frac{1}{f_{2}+1}-\frac{1}{f_{1}+1}$. This difference is the same for both players. Given equal efforts, both players have a
higher chance of winning in the second period if they win in the first period. This creates an additional incentive for both of them to put in more effort and win in the first period. However, this incentive is the same for both players and results in an equal increase in their effort choices.

Secondly, the levels of effort that each player exerts in equilibrium in the second period will depend on who wins in the first period. If B wins in the first period, the advantage will decrease or reverse in the second-period contest. As a result, the contest will become more symmetric because the players' productivities of effort will become more similar to each other. Lemma 1 tells us that if B wins in the first period, each player will need to exert a high level of effort in the second-period contest, which will be relatively symmetric. On the other hand, if A wins in the first period, the second-period contest will be asymmetric and require less effort from each player in equilibrium. Therefore, A has an additional incentive to increase effort to win in the first period in order to preserve the asymmetry, an incentive that B lacks. High effort-inducing symmetry crowds out some of the benefit for $B$ from overcoming the disadvantage.

Taking the probability-increasing first component and the effort-inducing second component together, we know that both players A and B exert a higher effort under reducible and reversible advantage, i.e., $V_{i}>V \forall i \in\{A, B\}$. But, the increase is greater for the advantaged player A than the disadvantaged player B due to A 's incentive to preserve the low effort inducing asymmetry, i.e., $V_{A}>V_{B} \Longrightarrow e_{1}^{A}>e_{1}^{B}$ and $P_{1}^{B}$ (reducible advantage) $<P_{1}^{B}$ (reversible advantage) $<P_{1}^{B}$ (fixed advantage). The only condition under which this result will not hold is when A's time preference for the future is sufficiently lower than B, such that A is not sufficiently incentivized to preserve advantage or asymmetry. In this case, B's total incentive to overcome the initial disadvantage is higher than A's incentive to preserve their advantage, or $V_{A}<V_{B}$ and $e_{1}^{A}>e_{1}^{B}$ enabling $B$ to benefit from reducible and reversible disadvantages: $P_{1}^{B}$ (reversible advantage) $>P_{1}^{B}$ (reducible advantage) $>P_{1}^{B}$ (fixed advantage). Comparing $V_{A}$ and $V_{B}$ determines the necessary threshold for A and B's time preference as a function of the initial advantage $f_{1}$ and subsequent advantage $f_{2}$ denoted by $\gamma$, which is smaller than one. These theoretical predictions are presented in Proposition 1.
Proposition 1. Assuming positive time preference for the future for $A$ and $B$ denoted by $\beta^{A}$ and $\beta^{B}$, respectively, a first-period advantage towards $A$ of $f_{1}>1$, and a second-period advantage towards $A$ of $f_{2}$, where $f_{2}=f_{1}$ if $A$ wins in the first period, $f_{2} \in\left[1, f_{1}\right)$ if $B$ wins in the first period and the advantage is reducible, and $f_{2} \in\left(f_{1}, f_{1}^{-1}\right)$ if $B$ wins in the first period and the advantage is reversible, then the equilibrium efforts in period 1 are characterized by the following:
a) Both players exert higher equilibrium efforts under reducible and reversible advantages compared to fixed advantage.
b) Both players exert equal equilibrium efforts under fixed advantage.
c) Unless A's time preference for the future is sufficiently lower than B's, the equilibrium effort of the advantaged player $A$ is higher than that of the disadvantaged player $B$ under reducible and reversible advantages. Specifically, if $\beta^{A}>\gamma \beta^{B}$, then $e_{1}^{A}>e_{1}^{B}$, and if $\beta^{A}<\gamma \beta^{B}$, then $e_{1}^{A}<e_{1}^{B}$, where $\gamma=\frac{\left(2+f_{2}+f_{1}\right)}{f_{1}+f_{2}+2 f_{1}^{2}}<1$.
The proof of this and the following proposition is in Appendix A. The players' equilibrium probability of winning is only determined by the initial advantage parameter $f_{1}$ under fixed advantage. Since both players exert equal efforts under fixed advantage, A and B's probabilities of winning are given by $\frac{f_{1}}{f_{1}+1}$ and $\frac{1}{f_{1}+1}$, respectively (see equation 1). However, when the advantage is reducible or reversible, A is incentivized to exert a higher effort than B, further reducing B's probability of winning in the first period. This effect increases the initial asymmetry and the subsequent symmetry that would be generated by B winning. As a result, the probability that B wins in the first period and overcomes the initial disadvantage is characterized as follows.
Proposition 2. B's probability of winning in the first period and overcoming the initial disadvantage $P_{1}^{B}$ is decreasing in $\frac{f_{1}}{f_{2}}$ if $\beta^{A}>\gamma \beta^{B}$, U-shaped in $\frac{f_{1}}{f_{2}}$ if $\beta^{A} \in\left(\gamma \beta^{B}, \beta^{B}\right)$ and increasing in $\frac{f_{1}}{f_{2}}$ if $\beta^{A}<\gamma \beta^{B}$, where $\gamma=\frac{\left(2+f_{2}+f_{1}\right)}{f_{1}+f_{2}+2 f_{1}^{2}}<1$.

The findings that both players invest more when advantages are flexible than fixed, and that the increase in A's effort is generally higher than the increase in B's effort are mainly driven by the negative relation between asymmetry in contests and contest effort or investment. Thus, the qualitative results are robust to other specifications and alternative models, which I discuss below.

Alternative models of advantage - In the above framework, I model players' advantage and disadvantage as asymmetry in the effectiveness of their contest effort or expenditure in determining their probabilities of winning. Alternatively, one can imagine asymmetry in players' values from winning the contest such that $V_{a}>V_{b}$ in the first period causing initial advantage and disadvantage. If the gap between $V_{a}$ and $V_{b}$ reduces or reverses in the second period if and only if B wins in the first period, the problem becomes equivalent to the one described above. Both players' utilities are increasing in their own prizes and falling in the prize of the other player. Thus, unless the initial advantage for A is too high (making B's marginal cost from disadvantage higher than A's marginal benefit from advantage), A's increase in effort to preserve the advantage and likelihood of initial success will be higher. A similar argument holds for the case of asymmetry in players' cost functions.

Convex Cost Function - If the cost function is convex instead of linear as assumed above, then the higher effort cost from symmetric equilibrium is even more relevant for determining players' initial effort or investment choices. Player A's incentive to avoid a change in advantage is stronger and Player B's incentive to overcome disadvantage is even weaker (than linear costs case) as each unit of additional effort becomes more costly. Ultimately the finding that A is even more likely to win the initial contest when advantage can be lost or reversed holds true for a larger set of time preference parameters $\beta_{A}$ and $\beta_{B}$ when cost functions are convex rather than linear.

Increase in A's advantage upon winning - Suppose that A's advantage is exacerbated by initial win, i.e., it increases to a higher level in the second period when A wins in the first period (instead of remaining the same as assumed above). This implies that the second-period contest is more asymmetric if A wins and less asymmetric if B wins. Thus, A's incentive to win initially is even higher (compared with the case analyzed above) as it not only avoids the higher cost equilibrium but causes a lower cost equilibrium. Similarly, B's incentive and increase in effort will be lower than the case when losing maintains but does not exacerbate A's advantage.

Endogenous advantage - In the analysis above, I assume that whether or not advantage changes is endogenous but that the initial advantage and degree of advantage change is exogenous. I derive the effect of the initial level and degree of change on players' response to a possibility of change. This is to encompass a wide range of applications where the sources of advantages and disadvantages may be different determining the level and degree of change, which I take as given. For example, Corchón (2007) assumes that the second period advantage is the share of prize won in the first period and find similar advantage exacerbating effect under certain conditions. Alternatively, if we consider the labor market discrimination context and the source of advantage is more favorable beliefs about A's ability than B's ability. Then as B is less likely to win the initial contest due to unfavorable beliefs, winning signals that $B$ is of a higher ability which compensates for the poorer beliefs and hence Bayesian updating will cause improved beliefs about B's ability for the next time that they compete.

Additive advantage or disadvantage - An additive advantage or disadvantage in winning probabilities is similar to an advantage in the prize from winning, which has been already discussed above.

The next section presents the experimental design to test the theoretical predictions of the model.

## 2 Experimental Design and Procedure

The experiment is designed to study the impact of reducible advantage when both players care about period two equally and when the advantaged type A cares sufficiently less about period-two than the disadvantaged type B (i.e., $\beta^{A}<\gamma \beta^{B}$ ). The impact of reversible advantage under the equal time preferences condition is also tested. I use the between-subjects design for the five treatments. The initial advantage towards A $\left(f_{1}\right)$ is 3 in each treatment, i.e., all else equal, A is thrice as likely to win as B. Periodtwo advantage towards A if A had won in period one remains 3 in each treatment. Period-two advantage towards A, if B had won in period one ( $f_{2}$ ), remains 3 under fixed advantage, becomes one under reducible advantage, and becomes 0.5 under reversible advantage. B's time preference for the future $\left(\beta^{B}\right)$ is 5 . A's time preference for the future $\left(\beta^{A}\right)$ is 0.1 when A cares sufficiently lesser about the future than B , five otherwise ${ }^{7}$. The endowment and the payoff from winning are 100 points for both types in each period.

Note that the case with $\beta^{A} \geq \gamma \beta^{B}$ is specified using equal time preferences, i.e., $\beta^{A}=\beta^{B}$ as $\gamma<1$. The choice of equal $\beta$ s for this case has an intuitive appeal for contexts where we do not have a reason to believe that the advantaged and the disadvantaged types will differ in their time preference. I choose the parameter values of V and f to contextualize the data with the existing literature. The choice of $\beta$ s ensures a clear difference in predicted efforts under different treatments. A higher than one value of $\beta$ is interpreted as the reduced form valuation of a stream of future periods aggregated in period 2. The choice of $f_{2}$ is intuitively appealing and easy to apply in the lab as it means that the disadvantage is reinforced in the second period when A wins in the first period and completely goes away when B wins in the first period.

The theoretical predictions of the bids in period 1 of the advantaged and the disadvantaged types $\left(e_{1}^{A}, e_{1}^{B}\right)$ are given in Appendix B. Both types are expected to bid higher under reducible and reversible advantaged than a fixed advantage. The increase in bids due to reducible advantage is higher for type A than type B if relative $\beta=1$ and lower if relative $\beta=0.02$.

There are three key hypotheses regarding the players' bids in the first period:
Hypothesis 1 (Reducible). When $\beta^{A}=\beta^{B}$, each type bids higher under reducible disadvantage than fixed advantage, but the increase is greater for the advantaged type.

Hypothesis 2 (Reversible). When $\beta^{A}=\beta^{B}$, each type bids higher under reversible disadvantage than fixed advantage, but the increase is greater for the advantaged type.

[^3]Hypothesis 3 (Time Preferences). When $\beta^{A}=0.02 \beta^{B}$, each type bids higher under reducible disadvantage than fixed advantage, but the increase is greater for the disadvantaged type.

Moreover, from proposition 2, we know that the differential impact of reducible advantage on the advantaged player relative to the disadvantaged player is higher than the differential impact of reversible advantage on the advantaged player relative to the disadvantaged player.

The experiment has four parts followed by puzzles and a demographic survey. Part 1 measures the players' baseline behavior in contests and consists of 5 rounds of fair or non-discriminatory symmetric contests where each round consists of two periods. Part 2 induces and measures attentiveness with the incentivized slider task of setting a maximum number of sliders to given numbers between 0 and 100 in a minute (Gill and Prowse, 2012). Part 3 is the primary treatment task and comprises 10 rounds of the contest with (dis)advantage, where each round consists of two periods. Part 4 is one round of a single period of a non-discriminatory contest for a prize worth 0 to measure subjects' innate preference for winning regardless of the prize. The sessions end with puzzles such as the cognitive test, (Holt and Laury, 2002) risk preference lottery task, Hanoi task to measure farsightedness, and a demographic survey. All the parts are explained in detail below.

I programmed the experiment with the software oTree (Chen et al., 2016) and executed it online with undergraduate students at the University of California Irvine. 308 subjects participated in the study, with about 62 per treatment. Each individual participated in only one session, and no subject knew anything about this project or had any experience participating in a similar experiment. I added several quizzes to ensure alertness and comprehension of instructions. Following is the procedure followed in part 1 and 3. Subjects are randomly assigned to different treatments and roles (A or B) and randomly and anonymously matched into pairs of A and B. They play two periods of a contest in each round. There is an endowment of 100 points and a winning prize of 100 points in each period. They choose how much they want to bid out of 100 to influence their probability of winning and keep the rest. I invoke advantage without using neutral language. Subjects are informed that A's bid is multiplied by three while B's bid is multiplied by 1 to determine the number of A and B type balls put into the bid bag. One ball is drawn randomly from the bid bag to determine the winner. If $B$ wins in period 1, A's bid is multiplied by one (two) in period 2 of the reducible (reversible) advantage treatment.

A and B's time preferences are invoked in the following way. In the case of equal time preferences, the total payoff for each type is the payoff in period 1 plus 5 times the
payoff in period 2. In the case of unequal time preferences, the total payoff for type $A$ is the payoff in period 1 plus 10 percent of the payoff in period 2 , while the total payoff for type B is the payoff in period 1 plus 5 times the payoff in period 2. The parameters are chosen to ensure a large enough difference in the point prediction of bids under different treatments. Each session consists of 10 rounds of the repeated asymmetric contest. Subjects are anonymously and randomly re-matched with someone else of the opposite type in each round. One round is then picked at random for actual payment ( $1=100$ points). Every subject engages in 5 rounds of repeated symmetric contests and a simple effort task to measure attentiveness before the central part of the 10 rounds of the repeated asymmetric contest.

The decision screen provides information about the subject's type, the value of the prize and own, and other type's balls per point of the bid. It also has sliders and corresponding input box fields for subjects to submit the prediction of their match's bid and their bid. The subjects choose to type the bids or move the slider (both are synchronized). The decision screen has a calculator for subjects to find their expected payoff. They can move the sliders to try as many bid combinations as they want in each period. It also has a reminder box for subjects' type and relevant $\beta$.

At the end of each round, a results screen informed subjects whether they had won or not, their bid, match's bid, prediction, prediction payoff, task payoff, and total payoff in that round. I used the random lottery payment mechanism to ensure that the subjects treat every round as a separate task and that the stakes are not distributed over rounds. Even though this relies on the assumption that subjects are expected utility maximizers, which also affects the central question of interest in this paper, (Hey and Lee, 2005) show that under random lottery payment mechanism, subjects do answer as if they were separating the tasks over rounds.

The next part was also a bidding task with only one round of 1 period to measure subjects' preference for winning following (Sheremeta, 2010). Subjects are given an endowment of 50 points. They could choose how much to bid for a prize of 0 points. There were no types, i.e., it was a symmetric one-shot contest. This part was to measure subjects' preference for winning for its own sake as they have to incur costs for no prize. Experiments in contests often find overbidding relative to the Nash predictions. Preference for winning is an important reason for overbidding.

In the end, subjects filled in a survey consisting of a demographic questionnaire, cognitive reflection test to measure ability, incentivized tower of Hanoi task to measure the inclination and ability to do backward induction, and a modified (Holt and Laury, 2002) lottery task to measure risk preference. Payments consisted of the accumulated earnings throughout the experiment. Each session lasted about 60 minutes, and the
subjects' average payment was 20 USD. Screenshots of all the pages in the case of reducible advantage with relative time preference $=0.02$ are provided in appendix $C$.

## 3 Empirical Findings

Recall that A is three times more likely to win the contest in period 1 if they bid equally. The contest becomes fair and symmetric in period 2 if $B$ had won in period 1 and the advantage is reducible. Suppose advantage is reversible and B had won in period 1. In that case, B becomes advantaged in period 2 such that B is twice more likely to win the second-period contest, with equal bids. Next, I present results on the effect of reducible advantage when the advantaged type $A$ has a sufficiently lower time preference than $B$.

### 3.1 Equal time preferences

In what follows, I restrict the sample to the case of equal time preferences for both the advantaged and the disadvantaged players. I first compare the case of reducible advantage with fixed advantage and then compare reversible advantage with fixed advantage. Column (1) of Table 9 shows that when advantage is fixed, regressing the players' first-period bid on type, controlling for their bids in the symmetric contest (when there is no advantage), gender, prediction of other player's bid, innate preference for winning, cognitive ability and attention measures and risk preferences reveals no significant difference in bids based on type. Figure 1 illustrates this result by showing the average period- 1 bids by type under fixed advantage. Column (2) of Table 9 shows that when advantage is reducible, the advantaged type bids higher (but not significantly) than the disadvantaged type. The raw levels of average bids by the advantaged and disadvantaged players are illustrated in figure 1. Column (3) of table 9 shows that the interaction effect between type and reducible advantage is positive but not significant. While the standard errors (clustered at the session level) are not small, the regression coefficients suggest that reducible advantage fails to increase the initial likelihood of winning of the disadvantaged player $B$. The possibility of overcoming disadvantage does not incentivize people more than the threat of losing it.


Note: Error bars represent $90 \%$ confidence intervals.
Figure 1: Advantaged players increase their period 1 bids more than the disadvantaged player due to reducible advantage (when both players have equal weight on the second period payoff).

Next, I present the results examining the effect of reversible advantage. Recall that the initially disadvantaged type B becomes advantaged in the second period if and only if they had won in the first period. There is a smaller change in asymmetry under reversible advantage than reducible disadvantage, thereby increasing the importance of the threat of loss and the opportunity to gain favorable advantage in determining probabilities of winning compared with the future costs associated with them. Column (2) of Table 10 shows that when advantage is reversible, regressing the players' firstperiod bid on type, controlling for their bids in the symmetric contest (when there is no advantage), gender, prediction of other player's bid, innate preference for winning, cognitive ability and attention measures and risk preferences, reveals a positive but not significant difference in the advantaged and the disadvantaged type's first-period bids as also illustrated in figure 1. Column (3) of table 10 shows that the interaction effect between type and reversible advantage is positive and significant. Contrary to the theoretical prediction, I find an even larger differential in response to reversible advantage than reducible advantage. The disadvantaged player's bid does not increase enough to attain advantage as the advantaged player's bid increase to prevent losing the advantage and becoming disadvantaged. This is interesting because it implies that the contexts where advantages reverse after initial success of the disadvantaged (such as discrimination (Bohren et al., 2019; Beaman et al., 2009)) are even more likely to see a

Table 1: Equal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged players

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reducible advantage <br> (2) | Fixed and Reducible advantage <br> $\mathbf{( 3 )}$ |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
| Reducible | -4.17 | 3.32 | -4.30 |
|  | $(4.99)$ | $(2.61)$ | $(4.09)$ |
| Initially Advantaged $\times$ Reducible |  |  | 2.26 |
|  |  | $(5.00)$ |  |
| Bid in Symmetric | $0.67^{* *}$ |  | 8.21 |
|  | $(0.13)$ | $0.57^{* * *}$ | $(5.14)$ |
| Prediction of other's bid | $0.28^{*}$ | $(0.11)$ | $0.61^{* * *}$ |
|  | $(0.09)$ | $0.40^{* *}$ | $(0.08)$ |
| Male | 5.89 | $(0.12)$ | $0.36^{* * *}$ |
|  | $(2.49)$ | 10.4 | $(0.08)$ |
| Controls | YES | $(7.38)$ | $8.00^{* *}$ |
| Constant | -21.2 | YES | $(3.26)$ |
|  | $(9.46)$ | 5.17 | YES |
| R Squared | $(12.11)$ | -8.43 |  |
| No. of Observations | 0.667 | 0.348 | $(7.71)$ |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ** p -value $\leq 0.05$; ${ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type A, 0 otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize
(6) Controls: Attentiveness, Intrinsic preference for winning, Risk aversion, Backward Induction ability
persistence of disadvantages.

### 3.2 Unequal time preferences

Column (1) of Table 11 shows that when disadvantage is fixed, regressing the players' first-period bid on type, with all controls reveals no significant difference in the bids of the advantaged and the disadvantaged types under the unequal second period payoff weights condition as well. Figure 2 illustrates this finding by showing the average period- 1 bids by player under fixed advantage. Column (2) of Table 11 repeats the analysis for the case when advantage is reducible. It shows that when advantage is reducible, and the advantaged player has a sufficiently smaller time preference for the future than the disadvantaged player, then the advantaged player bids significantly lower than the disadvantaged player, as also illustrated in figure 2.

Table 2: Equal time preferences - Effect of reversible advantage on the first-period bids of the advantaged and disadvantaged types

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reversible advantage <br> $\mathbf{( 2 )}$ | Fixed and Reversible advantage <br> $\mathbf{( 3 )}$ |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
| Reversible | -4.17 | 17.4 | -4.58 |
|  | $(4.99)$ | $(10.16)$ | $(4.51)$ |
| Initially Advantaged $\times$ Reversible |  |  | -8.44 |
|  |  | $(8.44)$ |  |
| Bid in Symmetric | $0.67^{* *}$ |  | $19.9^{*}$ |
|  | $(0.13)$ | $\left(0.22^{*}\right.$ | $0.65)$ |
| Prediction of other's bid | $0.28^{*}$ | $(0.10)$ | $\left(02^{* * *}\right.$ |
|  | $(0.09)$ | 0.64 | $0.13)$ |
| Male | 5.89 | $(0.34)$ | $(0.21)$ |
|  | $(2.49)$ | -0.21 | 5.57 |
| Controls | YES | $(8.13)$ | $(3.58)$ |
| Constant | -21.2 | YES | YES |
| R Squared | -4.78 | -7.61 |  |
| No. of Observations | $(9.46)$ | $(19.23)$ | $(13.39)$ |

Notes: (1) ${ }^{*} p$-value $\leq 0.1$; ${ }^{* *} p$-value $\leq 0.05 ;{ }^{* * *} p$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type A, 0 otherwise
(4) Reversible $=1$ if advantage is reversible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize
(6) Controls: Attentiveness, Intrinsic preference for winning, Risk aversion, Backward Induction ability


Note: Error bars represent $90 \%$ confidence intervals.
Figure 2: Advantaged players increase their period one bids less than the disadvantaged player when they have sufficiently lowen\&veight on second period payoff than the disadvantaged players.

Table 3: Unequal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged types

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reducible advantage <br> $\mathbf{( 2 )}$ | Fixed and Reducible advantage <br> $\mathbf{( 3 )}$ |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
|  | 6.94 | -11.0 | $7.04^{*}$ |
| Reducible | $(4.02)$ | $(4.91)$ | $(3.20)$ |
|  |  |  | $20.6^{* * *}$ |
| Initially Advantaged $\times$ Reducible |  | $(2.83)$ |  |
|  |  | $-16.5^{*}$ |  |
| Bid in Symmetric | 0.49 | $(7.28)$ |  |
|  | $(0.25)$ | $0.38^{* *}$ |  |
| Prediction of other's bid | 0.33 | $(0.13)$ |  |
|  | $(0.24)$ | $(0.17)$ | $0.44^{*}$ |
| Male | 3.64 | 0.53 | $(0.19)$ |
|  | $(5.58)$ | $10.33)$ | $(4.01)$ |
| Controls | YES | $(5.85)$ | YES |
| Constant | 4.46 | YES | -5.15 |
|  | $(2.56)$ | $15.0^{*}$ | $(4.80)$ |
| R Squared | $(5.50)$ | 0.396 |  |
| No. of Observations | 0.338 | 0.266 | 120 |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ** p -value $\leq 0.05$; *** p -value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type, 0 otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize
(6) Controls: Attentiveness, Intrinsic preference for winning, Risk aversion, Backward Induction ability

Bringing the constant and reducible advantage within the same model, I again regress the average first-period bids on dummies corresponding to type (advantaged or disadvantaged), Reducible advantage ( 1 if yes, 0 if fixed), the interaction of type and reducible advantage, and the average bid in the symmetric contest only for the sub-sample with unequal time preferences. (Table 11, column 3). There is a significantly higher increase in first-period bids of the disadvantaged type relative to the advantaged type due to reducible disadvantage: the interaction effect between initially advantaged and reducible advantage is negative and significant. Reducible advantage now incentivizes the disadvantaged type more than the advantaged type contrasting the findings with equal time preferences. When a disadvantaged person's success can overcome their disadvantage, the chances of them reducing that disadvantage through initial success increases if the advantaged person's concern (weight) for the future is sufficiently small. The advantaged type's response to the threat of losing advantage is dominated by the disadvantaged type's incentive to attain fairness as she cares sufficiently more about the future and knows that the advantaged player doesn't
strategically gaining from this scenario. Thus, sufficiently lower weight on the second period or time preference for the future for the advantaged type is one possible case in which reducible advantage can indeed reduce the advantage.

Following are the findings on the effect of reducible advantage, reversible advantage, and unequal time preference for the future on the players' bids in the first period.

Finding 1 (Reducible). When $\beta^{A}=\beta^{B}$, each type bids higher under reducible advantage than fixed advantage, but the increase is greater (not significantly) for the advantaged type.

Finding 2 (Reversible). When $\beta^{A}=\beta^{B}$, each type bids higher under reversible advantage than fixed advantage, but the increase is greater for the advantaged type.

Finding 3 (Future Concern). When $\beta^{A}=0.02 \beta^{B}$, each type bids higher under reducible advantage than fixed advantage, but the increase is significantly greater for the disadvantaged type.

Empirical findings from the experiment are broadly consistent with the theoretically informed hypotheses. Reducible and reversible advantages reduce the disadvantaged type's initial chances of winning. Interestingly, the effect is even stronger for the case of reversible advantage contrary to the theoretical prediction. This implies that the threat of becoming disadvantaged from initially advantaged is even stronger than the threat of losing advantage, which suggests a potential role of behavioral biases such as the endowment effect concerning relative position.

The disadvantaged type reacts more strongly to the incentive to attain fairness in the second period only when they care sufficiently more about the future. In this case, the disadvantage trap breaks, and fairness can be attained over time. I have also tested alternative empirical specifications without controls and with some controls only, as given in Appendix B. The empirical findings remain the same with a higher positive effect of reducible and reversible advantages on the advantaged player's initial bids than the disadvantaged when they have equal $\beta \mathrm{s}$, and vice versa when the advantaged player has a sufficiently smaller $\beta$. Further, while women have been generally found to bid higher than men in contestsPrice and Sheremeta (2015); Chen (2013); Mago et al. (2013), I find that men bid significantly more than women. It may be driven by a higher status keeping and seeking behavior among men, which is a unique feature of the contest in this studyMago, Shakun D and Samak, Anya C and Sheremeta, Roman M (2016). However, it remains an open question which I am unable to answer using this experiment's data.

## 4 Conclusion

This paper identifies and discusses one reason why disadvantages persist even when there is an opportunity for change. I use a combination of theoretical and experimental methods to examine the effect of flexible advantage on people's economic outcomes. Organizations often rely on competition between agents for resource allocation, such as elections, college admission tests, job interviews, litigation, and sports. Thus, I model the problem in the framework of contest theory (Tullock, 1967). The theoretical analysis predicts that unless the advantaged competitor cares sufficiently lesser about the future than the disadvantaged competitor, the possibility of a decline or reversal in advantages and disadvantages is unlikely to materialize. I show that the advantaged competitor is even more likely to succeed in a dynamic environment as s/he responds to the threat of losing an advantage.

I present results from a laboratory experiment where subjects are randomly assigned to be the advantaged and disadvantaged players in a repeated contest. I find that the subjects whose advantage declines or reverses if they lose choose significantly higher contest expenditures to win and resist losing their advantage. Similarly, the subjects whose disadvantage declines or reverses if they win choose significantly higher contest expenditures to win and overcome their disadvantage. However, the increase is greater for the advantaged subjects, resulting in an even higher initial success rate for them and small chances of advantage decline and reversal unless the weight attached to the second-period payoff is sufficiently smaller for them. In fact, the possibility of advantage reversal poses an even greater threat than the possibility of advantage reduction, but it doesn't affect the disadvantaged player's behavior differently.

The paper's main message is that people's response to the possibility of change has non-trivial implications for whether such opportunities and possibilities materialize. Enabling disadvantaged people in contexts such as sports, politics, and the labor market to overcome their disadvantages by proving their mettle is unlikely to achieve equality, as the behavior of the advantaged people also matters for the overall outcomes. However, if the policymaker's objective is not equality but incentivizing efforts, then creating such a competition for advantages might be helpful. These dynamics may be an economic rationale for employers' initial favoritism toward some employees. The competition to remain and become the employer's favored employee induces higher efforts from all employees while the initially favored employee maintains this position. However, this remains an empirical question for future work. Overall, this paper argues that the incentive of the advantaged people to maintain privilege in competitive environments explains the slow change in disadvantage despite the opportunity to
overcome disadvantage even in dynamic and progressive environments.

## References

Aigner, Dennis J and Glen G Cain (1977), "Statistical Theories of Discrimination in Labor Markets." ILR Review, 30, 175-187.

Ayalew, Shibiru, Shanthi Manian, and Ketki Sheth (2018), "Discrimination from below: Experimental evidence on female leadership in Ethiopia." Technical report, mimeo.

Beaman, Lori, Raghabendra Chattopadhyay, Esther Duflo, Rohini Pande, and Petia Topalova (2009), "Powerful Women: Does Exposure Reduce Bias?" The Quarterly Journal of Economics, 124, 1497-1540.

Becker, Gary S (1957), "The Theory of Discrimination."
Bertrand, Marianne and Esther Duflo (2017), "Field experiments on discrimination." In Handbook of Economic Field Experiments, volume 1, 309-393, Elsevier.

Bohren, J Aislinn, Alex Imas, and Michael Rosenberg (2019), "The Dynamics of Discrimination: Theory and Evidence." American Economic Review, 109, 3395-3436.

Boisjoly, Johanne, Greg J Duncan, Michael Kremer, Dan M Levy, and Jacque Eccles (2006), "Empathy or Antipathy? The Impact of Diversity." American Economic Review, 96, 1890-1905.

Brown, Jennifer (2011), "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars." Journal of Political Economy, 119, 982-1013.

Cairns, Robert D (1989), "Dynamic rent seeking." Journal of Public Economics, 39, 315-334.
Che, Yeon-Koo and Ian Gale (2003), "Optimal Design of Research Contests." American Economic Review, 93, 646-671.

Chen, Daniel L, Martin Schonger, and Chris Wickens (2016), "otree—an open-source platform for laboratory, online, and field experiments." Journal of Behavioral and Experimental Finance, 9, 88-97.

Chen, M Keith (2013), "The effect of language on economic behavior: Evidence from savings rates, health behaviors, and retirement assets." American Economic Review, 103, 690-731.

Chowdhury, Subhasish M, Patricia Esteve-González, and Anwesha Mukherjee (2023), "Heterogeneity, Leveling the Playing Field, and Affirmative Action in Contests." Southern Economic Journal, 89, 924-974.

Clark, Derek J and Christian Riis (1998), "Contest Success Functions: An Extension." Economic Theory, 201-204.

Corchón, Luis C (2000), "On the allocative effects of rent seeking." Journal of Public Economic Theory, 2, 483-491.

Corchón, Luis C (2007), "The Theory of Contests: A Survey." Review of Economic Design, 11, 69-100.

Cornes, Richard and Roger Hartley (2005), "Asymmetric contests with general technologies." Economic Theory, 26, 923-946.

Darity, William et al. (2005), "Stratification economics: the role of intergroup inequality." Journal of Economics and Finance, 29, 144.

Darity Jr, William A (2022), "Position and possessions: stratification economics and intergroup inequality." Journal of Economic Literature, 60, 400-426.

Dechenaux, Emmanuel, Dan Kovenock, and Roman M Sheremeta (2015), "A Survey of Experimental Research on Contests, All-pay Auctions and Tournaments." Experimental Economics, 18, 609-669.

Denter, Philipp, John Morgan, and Dana Sisak (2022), "Showing off or laying low? The economics of psych-outs." American Economic Journal: Microeconomics, 14, 529-580.

Dhar, Diva, Tarun Jain, and Seema Jayachandran (2022), "Reshaping Adolescents' Gender Attitudes: Evidence from a School-based Experiment in India." American Economic Review, 112, 899-927.

Epstein, Gil S, Yosef Mealem, and Shmuel Nitzan (2011), "Political Culture and Discrimination in Contests." Journal of Public Economics, 95, 88-93.

Falk, Armin, Anke Becker, Thomas Dohmen, Benjamin Enke, David Huffman, and Uwe Sunde (2018), "Global evidence on economic preferences." The Quarterly Journal of Economics, 133, 1645-1692.

Fang, Dawei, Thomas Noe, and Philipp Strack (2020), "Turning Up the Heat: The Discouraging Effect of Competition in Contests." Journal of Political Economy, 128, 1940-1975.

Fang, Hanming and Andrea Moro (2010), "Theories of Statistical Discrimination and Affirmative Action: A Survey in Handbook of Social Economics, Vol I, edited by Jess Benhabib, Alberto Bisin, and Matthew Jackson."

Franke, Jörg, Christian Kanzow, Wolfgang Leininger, and Alexandra Schwartz (2013), "Effort Maximization in Asymmetric Contest Games with Heterogeneous Contestants." Economic Theory, 52, 589-630.

Franke, Jörg, Wolfgang Leininger, and Cédric Wasser (2018), "Optimal Favoritism in All-pay Auctions and Lottery Contests." European Economic Review, 104, 22-37.

Fryer Jr, Roland G (2007), "Belief Flipping in a Dynamic Model of Statistical Discrimination." Journal of Public Economics, 91, 1151-1166.

Fu, Qiang and Zenan Wu (2022), "Disclosure and Favoritism in Sequential Elimination Contests." American Economic Journal: Microeconomics, 14, 78-121.

Garfinkel, Michelle R and Stergios Skaperdas (2000), "Conflict without misperceptions or incomplete information: How the future matters." Journal of Conflict Resolution, 44, 793-807.

Gill, David and Victoria Prowse (2012), "A Structural Analysis of Disappointment Aversion in a Real Effort Competition." American Economic Review, 102, 469-503.

Gradstein, Mark (1995), "Intensity of Competition, Entry and Entry Deterrence in Rent Seeking Contests." Economics \& Politics, 7, 79-91.

Groot, Wim and Henriette Maassen Van Den Brink (1996), "Glass Ceilings or Dead Ends: Job Promotion of Men and Women Compared." Economics Letters, 53, 221-226.

Hey, John D and Jinkwon Lee (2005), "Do subjects separate (or are they sophisticated)?" Experimental Economics, 8, 233-265.

Hillman, Arye L and John G Riley (1989), "Politically Contestable Rents and Transfers." Economics \& Politics, 1, 17-39.

Holt, Charles A and Susan K Laury (2002), "Risk aversion and Incentive effects." American Economic Review, 92, 1644-1655.

Jia, Hao, Stergios Skaperdas, and Samarth Vaidya (2013), "Contest functions: Theoretical foundations and issues in estimation." International Journal of Industrial Organization, 31, 211-222.

Kirkegaard, René (2012), "Favoritism in Asymmetric Contests: Head starts and Handicaps." Games and Economic Behavior, 76, 226-248.

Konrad, Kai A (2009), "Strategy and Dynamics in Contests." OUP Catalogue.
Kubitz, Greg (2023), "Two-stage Contests with Private Information." American Economic Journal: Microeconomics, 15, 239-287.

Leininger, Wolfgang and Chun-Lei Yang (1994), "Dynamic Rent-seeking Games." Games and Economic Behavior, 7, 406-427.

Lewis, Gregory B (1986), "Gender and Promotions: Promotion Chances of White Men and Women in Federal White-collar Employment." Journal of Human Resources, 406-419.

Mago, Shakun D, Roman M Sheremeta, and Andrew Yates (2013), "Best-of-three contest experiments: Strategic versus psychological momentum." International Journal of Industrial Organization, 31, 287-296.

Mago, Shakun D and Samak, Anya C and Sheremeta, Roman M (2016), "Facing your opponents: Social identification and information feedback in contests." Journal of Conflict Resolution, 60, 459-481.

McBride, Michael and Stergios Skaperdas (2006), "Explaining Conflict in Low-Income Countries: Incomplete Contracting in the Shadow of the Future." Institutions and Norms in Economic Development, 141.

Mengel, Friederike, Jan Sauermann, and Ulf Zölitz (2019), "Gender Bias in Teaching Evaluations." Journal of the European Economic Association, 17, 535-566.

Nti, Kofi O (2004), "Maximum Efforts in Contests with Asymmetric Valuations." European Journal of Political Economy, 20, 1059-1066.

Phelps, Edmund S (1972), "The Statistical Theory of Racism and Sexism." The American Economic Review, 62, 659-661.

Price, Curtis R and Roman M Sheremeta (2015), "Endowment origin, demographic effects, and individual preferences in contests." Journal of Economics $\mathcal{E}$ Management Strategy, 24, 597-619.

Sheremeta, Roman M (2010), "Experimental comparison of multi-stage and one-stage contests." Games and Economic Behavior, 68, 731-747.

Skaperdas, Stergios and Li Gan (1995), "Risk aversion in contests." The Economic Journal, 105, 951-962.

Skaperdas, Stergios and Constantinos Syropoulos (1996), "Can the shadow of the future harm cooperation?" Journal of Economic Behavior E Organization, 29, 355-372.

Tullock, Gordon (1967), "The Welfare Costs of Tariffs, Monopolies, and Theft." Economic Inquiry, 5, 224-232.

Tullock, Gordon (1980), "Efficient Rent Seeking." In Toward a Theory of Rent Seeking Society (James M Buchanan, Robert D Tollison, and Gordon Tullock, eds.), 97-112, Texas A \& M University Press, College Station.

Wirl, Franz (1994), "The Dynamics of Lobbying - A Differential Game." Public Choice, 80, 307-323.

## Appendix A Proof of propositions

Using backward induction to solve for the subgame perfect Nash equilibrium of the 2-period contest, Consider the second and last period -
If player A won in the first period, then their advantage $f$ remains the same in the second period. The second-period contest success function is given by :

$$
P_{2}^{A}, P_{2}^{B}= \begin{cases}\frac{f_{2} e_{2}^{A}}{f_{2} e_{2}^{A}+e_{2}^{B}}, \frac{e_{2}^{B}}{f_{2} e_{2}^{A}+e_{2}^{B}} & \text { if } \max \left\{e_{2}^{A}, e_{2}^{B}\right\}>0 \\ \frac{f_{2}}{f_{2}+1}, \frac{1}{f_{2}+1} & \text { if } e_{2}^{A}=0=e_{2}^{B}\end{cases}
$$

In the Nash Equilibrium of this contest:
Equilibrium efforts:

$$
\begin{equation*}
e_{2}^{A}=\frac{f_{2}}{\left(f_{2}+1\right)^{2}} V, e_{2}^{B}=\frac{f_{2}}{\left(f_{2}+1\right)^{2}} V \tag{A.1}
\end{equation*}
$$

Equilibrium probabilities of winning:

$$
\begin{equation*}
P_{2}^{A}=\frac{f_{2}}{f_{2}+1}, P_{2}^{B}=\frac{1}{f_{2}+1} \tag{A.2}
\end{equation*}
$$

Equilibrium expected utilities:

$$
\begin{equation*}
U_{2}^{A}=\frac{f_{2}^{2}}{\left(f_{2}+1\right)^{2}} V, U_{2}^{B}=\frac{1}{\left(f_{2}+1\right)^{2}} V \tag{A.3}
\end{equation*}
$$

where $f_{2}=f_{1}$ if player A won in the first period or if A's advantage is fixed, and $f_{2} \in\left[1, f_{1}\right]$ if player B won in the first period and advantage is reducible, and $f_{2} \in\left(f_{1}^{-1}, 1\right)$ if player $B$ won in the first period and advantage is reversible.
From equation (A-1) we know that $e_{2}^{A}=e_{2}^{B}$ and decreasing in $f_{2}$ if $f_{2}>1$ and increasing in $f_{2}$ if $f_{2}<1$, which proves Lemma 1 .

The first-period contest success function is given by :

$$
P_{1}^{A}, P_{1}^{B}= \begin{cases}\frac{f_{1} e_{1}^{A}}{f_{1} e_{1}^{A}+e_{1}^{B}}, \frac{e_{1}^{B}}{f_{1} e_{1}^{A}+e_{1}^{B}} & \text { if } \max \left\{e_{1}^{A}, e_{1}^{B}\right\}>0 \\ \frac{f_{1}}{f_{1}+1}, \frac{1}{f_{1}+1} & \text { if } e_{1}^{A}=0=e_{1}^{B}\end{cases}
$$

Using equation (3) above, players maximize their expected utilities in the first period given by,

$$
\begin{aligned}
& U_{1}^{A}\left(e_{1}^{A}, e_{1}^{B}\right)=\frac{f_{1} e_{1}^{A}}{f_{1} e_{1}^{A}+e_{1}^{B}} V_{A}-e_{1}^{A} \\
& U_{1}^{B}\left(e_{1}^{A}, e_{1}^{B}\right)=\frac{e_{1}^{B}}{f_{1} e_{1}^{A}+e_{1}^{B}} V_{B}-e_{1}^{B}
\end{aligned}
$$

where, $V_{A}$ and $V_{B}$ are the values from winning in period 1 for players A and B respectively, derived by taking the difference of their total expected utility if they win in the first period and if they lose in the first period.

$$
V_{A}=\left[1+\beta_{a}\left(\frac{f_{1}^{2}}{\left(f_{1}+1\right)^{2}}-\frac{f_{2}^{2}}{\left(f_{2}+1\right)^{2}}\right)\right] V \quad \text { and } \quad V_{B}=\left[1+\beta_{b}\left(\frac{1}{\left(f_{2}+1\right)^{2}}-\frac{1}{\left(f_{1}+1\right)^{2}}\right)\right] V
$$

This generates the following equilibrium outcome of period 1, Equilibrium efforts:

$$
\begin{equation*}
e_{1}^{A}=\frac{f_{1} V_{A}^{2} V_{B}}{\left(f_{1} V_{A}+V_{B}\right)^{2}} \quad \text { and } \quad e_{1}^{B}=\frac{f_{1} V_{B}^{2} V_{A}}{\left(f_{1} V_{A}+V_{B}\right)^{2}} \tag{A.4}
\end{equation*}
$$

Equilibrium probabilities of winning:

$$
\begin{equation*}
P_{1}^{A}=\frac{f_{1} V_{A}}{f_{1} V_{A}+V_{B}} \quad \text { and } \quad P_{1}^{B}=\frac{V_{B}}{f_{1} V_{A}+V_{B}} \tag{A.5}
\end{equation*}
$$

Equilibrium expected utilities:

$$
\begin{equation*}
U_{1}^{A}=\frac{f_{1} V_{A}}{f_{1} V_{A}+V_{B}}\left[V-\frac{f_{1} V_{A} V_{B}}{f_{1} V_{A}+V_{B}}\right] \quad \text { and } \quad U_{1}^{B}=\frac{V_{B}}{f_{1} V_{A}+V_{B}}\left[V-\frac{f_{1} V_{A} V_{B}}{f_{1} V_{A}+V_{B}}\right] \tag{A.6}
\end{equation*}
$$

From (5),

$$
e_{1}^{A}>e_{1}^{B} \Longleftrightarrow V_{A}>V_{B} \Longleftrightarrow \frac{\beta^{A}}{\beta^{B}}>\frac{\left(2+f_{2}+f_{1}\right)}{f_{1}+f_{2}+2 f_{1}^{2}}=I<1
$$

Define $f_{2}=\theta f_{1}$
Note that, $V_{A}$ and $V_{B}$ are decreasing in $\theta$.

Further,

$$
\begin{aligned}
\frac{\partial\left(\frac{V_{A}}{V_{B}}\right)}{\partial \theta} & =\frac{2 f_{1}\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)-f_{1}^{2} \beta^{A}\left(\theta+2 f_{1}+1\right)+f_{1}^{2} \beta^{A}(1-\theta)}{\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)^{2}+f_{1} \beta^{B}(1-\theta)\left(f_{1} \theta+f_{1}+2\right)} \\
& -\frac{\left(-f_{1} \beta_{B}\left(\theta f_{1}+f_{1}+2\right)+2 f_{1}\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)\right.}{\left(\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)^{2}+f_{1} \beta^{B}(1-\theta)\left(\theta f_{1}+f_{1}+2\right)\right)^{2}} \\
& -\frac{\left.f_{1}^{2} \beta^{B}(1-\theta)\right)\left(\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)^{2}+f_{1}^{2} \beta^{A}(1-\theta)\left(\theta+2 f_{1}+1\right)\right)}{\left(\left(f_{1}+1\right)^{2}\left(\theta f_{1}+1\right)^{2}+f_{1} \beta^{B}(1-\theta)\left(\theta f_{1}+f_{1}+2\right)\right)^{2}} \\
& <0 \text { if } \frac{\beta^{A}}{\beta^{B}}>\gamma \\
& U \text { - shaped if } \frac{\beta^{A}}{\beta^{B}} \in(1, \gamma), \text { change of slope at } \theta=\theta^{*}\left(f_{1}\right) \\
& >0 \text { if } \frac{\beta^{A}}{\beta^{B}}<1
\end{aligned}
$$

where $\theta^{*}\left(f_{1}\right)$ is increasing in $f_{1}$ and is found by setting the above equation equal to 0 .
Moreover, $p_{1}^{A}$ is increasing in $\frac{V_{A}}{V_{B}}$ and $P_{1}^{B}$ is decreasing in $\frac{V_{A}}{V_{B}}$. Thus, $P_{1}^{A}$ is increasing, U-shaped and decreasing in $\left(\theta^{-1}\right)$.
Similarly, $U_{1}^{A}$ and $U_{2}^{B}$ are decreasing in $\left(\theta^{-1}\right)$, decreasing in own $\beta$ and increasing in other player's $\beta$.
This proves Propositions 1 and 2.

## Appendix B Additional Tables

Table 4: Treatment table

|  | $\left(f_{1}, f_{2}\right.$ if B wins in period $\left.1, \beta_{a}, \beta_{b}\right)$ |  |  |
| :--- | :---: | :---: | :---: |
|  | Fixed advantage | Reducible advantage | Reversible advantage |
| $\beta_{a}=\beta_{b}$ | $(3,3,5,5)$ | $(3,1,5,5)$ | $(3,1 / 2,5,5)$ |
| $\beta_{a}=0.02 \beta_{b}$ | $(3,3,0.1,5)$ | $(3,1,0.1,5)$ |  |

Table 5: Theoretical Predictions of Bids in Period 1

|  | Bids $-\left(e_{1 a}, e_{1 b}\right)$ |  |  |
| :--- | :---: | :---: | :---: |
|  | Fixed advantage | Reducible advantage | Reversible advantage |
| $\beta_{a}=\beta_{b}$ | $18.75,18.75$ | 41,31 | 58,51 |
| $\beta_{a}=0.02 \beta_{b}$ | $18.75,18.75$ | $24.4,45.8$ | - |

Table 6: Equal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged players - No controls

| Variable | Fixed advantage <br> (1) | Reducible advantage <br> (2) | Fixed and Reducible advantage <br> (3) |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
| Reducible | -1.95 | 4.03 | -1.95 |
|  | $(7.29)$ | $(2.75)$ | $(6.38)$ |
| Initially Advantaged $\times$ Reducible |  |  | 8.65 |
|  |  | $(5.67)$ |  |
| Constant | $41.1^{* *}$ | $49.8^{* * *}$ | 5.98 |
|  | $(5.55)$ | $(3.06)$ | $(6.90)$ |
| R Squared | 0.001 | 0.006 | $41.1^{* * *}$ |
| No. of Observations | 56 | 78 | $(4.85)$ |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ${ }^{* *} \mathrm{p}$-value $\leq 0.05$; ${ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type $\mathrm{A}, 0$ otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

Table 7: Equal time preferences - Effect of reversible advantage on the first-period bids of the advantaged and disadvantaged types - No controls

| Variable | Fixed advantage <br> (1) | Reversible advantage <br> (2) | Fixed and Reversible advantage <br> (3) |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
|  | -1.95 | $15.6^{*}$ | -1.95 |
| Reversible | $(7.29)$ | $(6.42)$ | $(6.34)$ |
|  |  |  | 0.32 |
| Initially Advantaged $\times$ Reversible |  | $(8.73)$ |  |
|  |  |  | $17.5^{*}$ |
| Constant | $41.1^{* *}$ | $(8.90)$ |  |
|  | $(5.55)$ | $41.4^{* * *}$ | $41.1^{* * *}$ |
| R Squared | 0.001 | $(7.48)$ | $(4.83)$ |
| No. of Observations | 56 | 0.080 | 0.062 |
|  |  | 54 | 110 |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ${ }^{* *} \mathrm{p}$-value $\leq 0.05 ;{ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type A, 0 otherwise
(4) Reversible $=1$ if advantage is reversible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

Table 8: Unequal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged types - No controls

| Variable | Fixed advantage <br> (1) | Reducible advantage <br> (2) | Fixed and Reducible advantage <br> (3) |
| :---: | :---: | :---: | :---: |
|  | (1) | (2) | (3) |
| Initially Advantaged | $\begin{aligned} & 6.50^{*} \\ & (0.94) \end{aligned}$ | $\begin{aligned} & -4.75 \\ & (4.57) \end{aligned}$ | $\begin{gathered} 6.50^{* * *} \\ (0.73) \end{gathered}$ |
| Reducible |  |  | $\begin{gathered} 28.6^{* * *} \\ (2.45) \end{gathered}$ |
| Initially Advantaged $\times$ Reducible |  |  | $\begin{gathered} -11.2^{*} \\ (4.42) \end{gathered}$ |
| Constant | $21.8^{* * *}$ (0.13) | $\begin{gathered} 50.4^{* * *} \\ (2.57) \end{gathered}$ | $\begin{gathered} 21.8^{* * *} \\ (0.10) \end{gathered}$ |
| R Squared | 0.022 | 0.008 | 0.188 |
| No. of Observations | 56 | 64 | 120 |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ** p -value $\leq 0.05$; ${ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type, 0 otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

Table 9: Equal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged players - With some controls

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reducible advantage <br> (2) | Fixed and Reducible advantage <br> (3) |
| :--- | :---: | :---: | :---: |
| (1) | $(2)$ | $(3)$ |  |
| Initially Advantaged | -3.83 | 3.70 | -3.96 |
| Reducible | $(4.86)$ | $(3.23)$ | $(4.30)$ |
|  |  |  | 2.87 |
| Initially Advantaged $\times$ Reducible |  | $(5.81)$ |  |
|  |  | 8.18 |  |
| Bid in Symmetric | $0.69^{* *}$ | $(5.07)$ |  |
|  | $(0.12)$ | $0.56^{* * *}$ | $0.63^{* * *}$ |
| Prediction of other's bid | 0.24 | $(0.10)$ | $(0.08)$ |
|  | $(0.13)$ | $0.38^{* *}$ | $0.35^{* * *}$ |
| Male | 5.14 | $(0.12)$ | $(0.08)$ |
|  | 8.66 | $7.23^{*}$ |  |
| Constant | $(3.81)$ | $(6.93)$ | $(3.28)$ |
|  | $-13.8^{* *}$ | -3.03 | -10.6 |
| R Squared | $(2.80)$ | $(8.04)$ | $(5.77)$ |
| No. of Observations | 0.624 | 0.330 | 0.476 |
|  | 56 | 78 | 134 |

Notes: $(1){ }^{*} \mathrm{p}$-value $\leq 0.1$; ${ }^{* *} \mathrm{p}$-value $\leq 0.05 ;{ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type $\mathrm{A}, 0$ otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

Table 10: Equal time preferences - Effect of reversible advantage on the first-period bids of the advantaged and disadvantaged types - With some controls

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reversible advantage <br> $\mathbf{( 2 )}$ | Fixed and Reversible advantage <br> (3) |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
| Reversible | -3.83 | 17.2 | -4.59 |
|  | $(4.86)$ | $(9.41)$ | $(4.90)$ |
| Initially Advantaged $\times$ Reversible |  |  | -8.12 |
|  |  | $(8.40)$ |  |
| Bid in Symmetric | $0.69^{* *}$ | $20.1^{*}$ |  |
|  | $(0.12)$ | 0.22 | $(9.84)$ |
| Prediction of other's bid | 0.24 | $(0.13)$ | $0.53^{* * *}$ |
|  | $(0.13)$ | 0.63 | $(0.14)$ |
| Male | 5.14 | $(0.33)$ | $0.51^{* *}$ |
|  | $(3.81)$ | 0.67 | $(0.20)$ |
| Constant | $-13.8^{* *}$ | $(6.21)$ | 4.94 |
|  | $(2.80)$ | -3.67 | $(3.55)$ |
| R Squared | $(20.73)$ | -8.79 |  |
| No. of Observations | 0.624 | 0.286 | $(9.98)$ |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ${ }^{* *} \mathrm{p}$-value $\leq 0.05$; ${ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type A, 0 otherwise
(4) Reversible $=1$ if advantage is reversible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

Table 11: Unequal time preferences - Effect of reducible advantage on the first-period bids of the advantaged and disadvantaged types - With some controls

| Variable | Fixed advantage <br> $\mathbf{( 1 )}$ | Reducible advantage <br> $\mathbf{( 2 )}$ | Fixed and Reducible advantage <br> $\mathbf{( 3 )}$ |
| :--- | :---: | :---: | :---: |
| Initially Advantaged | $(1)$ | $(2)$ | $(3)$ |
| Reducible | 8.10 | -9.98 | 8.01 |
|  | $(6.28)$ | $(6.05)$ | $(4.40)$ |
| Initially Advantaged $\times$ Reducible |  |  | $21.1^{* * *}$ |
|  |  | $(3.38)$ |  |
| Bid in Symmetric | 0.44 | $-17.2^{*}$ |  |
|  | $(0.28)$ | $(7.71)$ |  |
| Prediction of other's bid | 0.32 | 0.32 | $0.37^{* *}$ |
|  | $(0.16)$ | $(0.16)$ | $(0.14)$ |
| Male | 3.30 | 0.45 | $0.41^{* *}$ |
|  | $(0.56)$ | 11.3 | $(0.14)$ |
| Constant | $\left(11.5^{*}\right.$ | $(6.24)$ | $8.97^{*}$ |
|  | $(1.24)$ | 9.11 | $(3.60)$ |
| R Squared | 0.292 | $-12.3^{* *}$ |  |
| No. of Observations | 56 | 0.249 | $(4.16)$ |

Notes: (1) ${ }^{*} \mathrm{p}$-value $\leq 0.1$; ${ }^{* *} \mathrm{p}$-value $\leq 0.05$; ${ }^{* * *} \mathrm{p}$-value $\leq 0.01$
(2) Standard errors from OLS regressions are clustered at session level and reported in parentheses
(3) Initially advantaged $=1$ if advantaged type, 0 otherwise
(4) Reducible $=1$ if advantage is reducible, 0 if advantage is fixed
(5) Intrinsic preference for winning is the bid in the contest for 0 prize

## Appendix C Screenshots of the players' screens

Screenshots of the advantaged player A's screen in the reducible disadvantage treatment when A's relative time preference or weight on period 2's payoff is 0.02 .

## 5 Rounds - 2 Periods



This part has 5 rounds (repetitions).
Each round consists of 2 periods.
One of the rounds will be picked at random for payment.
Each of the 5 rounds is equally likely to be the payment round.

You will be matched with a different participant in every round.

## Bidding Choice

In every round of part 1, you will be randomly and anonymously matched with a different participant.

Both of you will get 100 points in every period

One of you will win an additional prize of 100 points.

Both of you will bid for the prize

You can choose how much out of 100 you want to bid. You will keep the rest.

Your chances of winning will depend on how much you and "the other participant" bid. The computer will pick who gets the prize accordingly.

One and only one of you will win the prize in every period.

Next

## Summary of Choices

In every period:

1. You have to predict the bid of 'the other participant'.
2. You have to choose and submit your own bid.

You will earn points (and hence money) based on these:

- From Bidding - You get the prize of 100 points if the computer picks you as the winner.
- From Prediction - You get a bonus of 25 points if the other participant's bid falls within 5 points of your prediction ( $\pm 5$ ).
- You always keep the points that you do not bid.


## Chances of winning

- For every point that you bid, the computer will put a purple ball in the 'Bid Bag'.
- For every point that the other participant bids, the computer will put a green ball in the 'Bid Bag'.

Then the computer will draw 1 ball at random from the bid bag.

- If the computer draws a purple ball, then you win.
- If the computer draws a green ball, then the other participant wins.
- Higher the number of purple balls in the Bid Bag, higher are your chances of winning.
- Higher the number of green balls in the Bid Bag, lower are your chances of winning.

Your chance of winning $=100 \times \frac{\text { Number of purple balls in the bid bag }}{\text { Total number of balls in the bid bag }}$

## Quiz

## Please take the following quiz to make sure that you understand the rules:

If both you and your matched other participant make equal bids, what is your chance of winning the 100 points?
25\% $50 \%$ 75\%

If you bid more than your matched other participant, what is your chance of winning the 100 points?
Higher than 50\% 100\%

- For every point that you bid, the computer will put a purple ball in the 'Bid Bag'.
- For every point that the other participant bids, the computer will put a green ball in the 'Bid Bag'.

Then the computer will draw 1 ball at random from the bid bag.

- If the computer draws a purple ball, then you win.
- If the computer draws a green ball, then the other participant wins.
- Higher the number of purple balls in the Bid Bag, higher are your chances of winning.
- Higher the number of green balls in the Bid Bag, lower are your chances of winning.

$$
\text { Your chance of winning }=100 \times \frac{\text { Number of purple balls in the bid bag }}{\text { Total number of balls in the bid bag }}
$$

Time left to complete this page: 0:55

## Yes! That's correct.

Quiz:What is your chance of winning if you and your matched other participant bid the same amounts? Answer : 50\%

Quiz:What is your chance of winning if you bid higher than your matched other participant?
Answer: Higher than 50\%

Next

Time left to complete this page: 0:53

## Total Payoff

- Total payoff in a Round = Period 1 Payoff + Period 2 Payoff

For example, if your payoff is 100 points in period 1 and 100 points in period 2, your total payoff will be 200 points in the round.

## Start

Please click 'Next' to continue to the first Round.

```
Time left to complete this page: 3:48
```


## Round Number 1 of 5

## Period 1

| You: 1 point of bid = 1 Purple ball in the Bid Bag. | One ball will be drawn at random to determine |
| :--- | :--- |
| The other participant: 1 point of bid $=1$ Green ball in the Bid Bag. | the winner of 100 points. |

Use the sliders or boxes below to choose your prediction of the other participant's bid and your own bid:

Prediction of other participant's Bid: 16

Choose your Bid: 34
You keep $=66$ points

## If the other participant bids what you predicted, then:

There is $\mathbf{6 8 \%}$ chance of the following:

- You win and your period 1 payoff is 166 points (Prize + what you keep)

And $\mathbf{3 2 \%}$ chance of the following:

- Your period 1 payoff is 66 points (what you keep)

Time left to complete this page: 0:53

Round Number 1 of 5

## Period 1 Results

| Ball drawn <br> Winner | Green <br> The other participant |
| :--- | :--- |
| Your chance of winning was | 41.46 percent |
| Your bid | 34.0 points |
| The other participant's bid | 48.0 points |
| You Predicted | 16.0 points |
| Prediction Bonus | 0 points |
| Bidding Payoff | $\mathbf{6 6}$ points |
| Total Period 1 Payoff | 66 points |

Next

Round Number 1 of 5

## Period 2

## You: 1 point of bid = $\mathbf{1}$ Purple ball in the Bid Bag. <br> One ball will be drawn at random to determine

The other participant: 1 point of bid = 1 Green ball in the Bid Bag. the winner of 100 points.

Use the sliders below to choose your prediction of other participant's bid and your own bid.

Prediction of other participant's Bid: 39

Choose your Bid: 34
You keep $=66$
If the other participant bids what you predicted, then:

There is $\mathbf{4 7 \%}$ chance that:

- You win and your period 2 payoff is $\mathbf{1 6 6}$ points (Prize + what you keep)

And 53\% chance that:

- Your period 2 payoff is $\mathbf{6 6}$ points (what you keep)

Time left to complete this page: 0:51

Round Number 1 of 5

## Period 2 Results

| Ball drawn | Green <br> The other participant |
| :--- | :--- |
| Winner | 52.31 percent |
| Your chance of winning was | 34.0 points |
| Your bid | 31.0 points |
| The other participant's bid | 39.0 points <br> 0 points |
| You Predicted | $\mathbf{6 6}$ points |
| Prediction Bonus | 66 points |
| Bidding Payoff |  |

Time left to complete this page: 0:45

Round Number 1 of 5

## Period 2 Results

| Ball drawn | Purple |
| :--- | :--- |
| Winner | You |
| Your chance of winning was | 47.69 percent |
| Your bid |  |
| The other participant's bid | 31.0 points |
| You Predicted | 34.0 points |
| Prediction Bonus | 15.0 points |
| Bidding Payoff | 0 points |
| Total Period 2 Payoff | $\mathbf{1 6 9}$ points |

Time left to complete this page: 0:50

## Results History

| Round Number | Period 1 Bid | Period 1 Payoff | Period 2 Bid | Period 2 Payoff | Total Round Payoff <br> (Period 1) $\mathbf{( P e r i o d ~ 2 ) ~}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 34.0 | 66 points | 34.0 | 66 points | 132 points |

Next

Time left to complete this page: 0:10

You will now be randomly matched with another participant for the next round.
Please click 'Next' to continue to Round 2.

## Payoff from this Part

Time left to complete this page: 0:39

The computer determined that the payment round will be Round 5.
Your total payoff in this Round was $\mathbf{3 5 0}$ points
Please click 'Next' to continue to Part 2.

## Results History

| Round Number | Period 1 Bid | Period 1 Payoff | Period 2 Bid | Period 2 Payoff | Total Round Payoff <br> (Period 1) $\mathbf{( P e r i o d ~ 2 ) ~}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 25.0 | 175 points | 25.0 | 175 points | 350 points |
| 4 | 25.0 | 175 points | 25.0 | 75 points | 250 points |
| 3 | 25.0 | 75 points | 25.0 | 75 points | 150 points |
| 2 | 25.0 | 75 points | 25.0 | 175 points | 250 points |
| 1 | 34.0 | 66 points | 34.0 | 66 points | 132 points |

## Part 2

On the next page, there are many sliders.
Each of those needs to be set to a certain number.

## For each slider that you set correctly, you will earn 1 point.

There will be no 'Next' button and you will have 60 seconds to set as many sliders correctly as you can.
Click 'Next' to start your 60 seconds.

Set the following sliders as below:

| Set this to 50: |
| :--- |
| Set this to 20: |
| Set this to 65: |
| Set this to 17: |
| Set this to 34: |
| Set this to 89: |
| Set this to 75: |
| Set this to 8: |
| Set this to 50: |
| Set this to 31: |
| Set this to 18: |
| Set this to 74: |
| Set this to 100: |
| Set this to 41: |
| Set this to 18: |
| Set this to 92: |
| Set this to 23: |
| Set this to 56: |
| Set this to 14: |
| Set this to 83: |
| Set this to 30: |
| Set this to 5: |
| Set this to 45: |
| Set this to 71: |
| Set this to 66: |
| Set this to 31: |
| Set this to 10: |
| Set this to $80:$ |
| Set this to $28:$ |
| Set this to 13: |
| Set this to $54:$ |
| Set this to 87: |

10 Rounds -2 periods


This part has 10 rounds (repetitions).
Each round consists of 2 periods.
One of the rounds will be picked at random for payment.
Each of the 10 rounds is equally likely to be the payment round.

You will be matched with a different participant in every round.

## Bidding Choice

In every round of this part, you will be randomly and anonymously matched with another participant.

Both of you will get 100 points in every period.

One of you will win an additional prize of 100 points.

Both of you will bid for the prize.

You can choose how much out of 100 you want to bid. You will keep the rest.

Your chances of winning will depend on how much you and 'the other participant' bid. The computer will pick who gets the prize accordingly.

One and only one of you will win the prize in every period.

Next

## Summary of Choices

In every period:

1. You have to predict the bid of 'the other participant'.
2. You have to choose and submit your own bid.

You will earn points (and hence money) based on these:

- From Bidding - You get the prize of 100 points if the computer picks you as the winner.
- From Prediction - You earn 25 points if the other participant's bid falls within 5 points of your prediction ( $\pm 5$ ).
- You always keep the points that you do not bid.


## Types

There are two possible types for a participant - Type A and Type B The computer will randomly assign either Type A or Type B to you.

There is a $50 \%$ chance that you will be Type A and $50 \%$ chance that you will be Type B.

Your type will remain the same in every round.

Next

## Your Type

You are Type A for all the 10 rounds in this part.

You will be matched with a participant of Type B in every round.

## The type B participant you are matched with will change after every round.

But your type will remain A throughout this part.

Next

Time left to complete this page: 2:54

## Period 1 Rules

- For every point that $B$ bids, the computer puts 1 ' $B$ ' ball in the Bid Bag.
- For every point that A bids, the computer puts 3 ' A ' balls in the Bid Bag.

Then the computer draws 1 ball at random from the bid bag.

- If the computer draws an 'A' ball, then $A$ wins
- If the computer draws a ' B ' ball, then B wins
- Higher the number of 'A' balls in the Bid Bag, higher are your chances of winning.
- Higher the number of ' $B$ ' balls in the Bid Bag, lower are your chances of winning.

$$
\text { Your chance of winning }=100 \times \frac{\text { Number of A balls in the bid bag }}{\text { Total number of balls in the bid bag }}
$$

Period 2 Rules
(Depend on who wins in Period 1)


## Summary of Rules

You are Type A. Please take the following quiz to make sure that you understand the rules:
What is your chance of winning if you and your matched type B participant bid the same amounts in:
Period 1?
$25 \%$
50\%
$75 \%$

Period 2, when you had won in period 1?
$25 \%$
$50 \%$
$75 \%$

Period 2, when you had lost in period 1?
$25 \%$ 50\% $75 \%$


## Summary of Rules

You are Type A.

## Oops! That's not right.



## Payoff

- For both types :
- Total payoff in a Round = Period 1 Payoff + (5 * Period 2 Payoff)

For example, if your payoff is 100 points in period 1 and 100 points in period 2, your total payoff will be 600 points in the round.

## Start

Click 'Next' to continue to the first Round.

Time left to complete this page: $\mathbf{4 : 4 9}$

Round Number 1 of 10

## Period 1

You are Type A.
You: 1 point of bid = 3 ' 'A' balls in the bid bag
B: 1 point of bid = 1 ' $B^{\prime}$ ' ball in the bid bag $\quad$ the will will be drawn at random to determine 100 points.

Use the sliders or insert numbers below to choose and submit your Prediction of B's bid and your own Bid.

Prediction of B's Bid: 19
$B$ keeps $=81$ points

Choose your Bid: 28
You keep $=72$ points

## If $B$ bids what you predict:

There is $82 \%$ chance of the following:

- You win and your period 1 payoff is 172 points
- In period 2, 1 point of your bid = 3 A balls in the bid bag.

And $18 \%$ chance of the following:

- Your period 1 payoff is $\mathbf{7 2}$ points
- In period 2,1 point of your bid = 1 A ball in the bid bag


## Time left to complete this page: $\mathbf{4 : 3 8}$

Round Number 1 of 10

## Period 1

You are Type B.
You: 1 point of bid = 1 ' $B$ ' ball in the bid bag One ball will be drawn at random to determine A: 1 point of bid = 3 ' $A$ ' balls in the bid bag the winner of 100 points.

Use the sliders or insert numbers below to choose and submit your Prediction of A's bid and your own Bid.

Prediction of A's Bid: 20
A keeps $=80$ points

Choose your Bid: 27
You keep $=73$ points

## If A bids what you predict:

## There is $31 \%$ chance of the following:

- You win and your period 1 payoff is 173 points

And 69\% chance of the following:

- In period 2, 1 point of A's bid = 1 A ball in the bid bag.
- Your period 1 payoff is 73 points
- In period 2, 1 point of A's bid = 3 A balls in the bid bag


## Submit bids

Time left to complete this page: 1:26

Round Number 1 of 10

## Period 1 Results

| Ball drawn | A ball |
| :--- | :--- |
| Winner | A |
| Your chance of winning was | 24.32 percent |
| Your bid | 27.0 points |
| A's bid | 28.0 points |
| You Predicted | 20.0 points |
| Prediction Bonus | 0 points |
| Bidding Payoff | 73 points |
| Total Period 1 Payoff | 73 points |

## A won in round 1.

So, in period 2 again: 1 point of A's bid $=3 \mathrm{~A}$ balls in the bid bag
1 Point of your Bid = 1 B ball in the bid bag.

Next

## Period 2

| You are Type B. |  |
| :--- | :--- |
| You: 1 point of bid = 1 ' $B$ ' ball | One ball will be drawn at random to determine <br> A: 1 point of bid = 3 ' $A$ ' balls (as A won in Period 1) |
| the winner of 100 points in period 2. |  |

Use the sliders or insert numbers below to choose and submit your Prediction of A's bid and your own Bid.

Prediction of A's Bid: 27
A keeps $=73$ points

## Your Bid: 35

You keep $=65$ points

## If A bids what you predict:

There is $30 \%$ chance of the following:
And 70\% chance of the following:

- You win and your period 2 payoff is 165
- Your period 2 payoff is 65 points

Payoff in a Round $=$ Period 1 Payoff + (5 * Period 2 Payoff)

Time left to complete this page: 1:15

Round Number 1 of 10

## Period 2 Results

| Ball drawn | A ball |
| :--- | :--- |
| Winner | A |
| Your chance of winning was | 26.12 percent |
| Your bid | 35.0 points |
| A bid | 33.0 points |
| You Predicted | 27.0 points |
| Prediction Bonus | 0 points |
| Bidding Payoff | 65 points |
| Total Period 2 Payoff | 65 points |

## Results History

(Your Type - A)

| Round <br> Number | Period 1 <br> Bid | Period 1 <br> Winner | Period 1 <br> Payoff | Period 2 <br> Bid | Period 2 <br> Winner | Period 2 <br> Payoff | Total Payoff <br> (Period 1)+ <br> (5*Period 2) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 28.0 | You | 172 points | 33.0 | You | 167 points | 1007 points |

You will now be randomly matched with another type B participant for the next round. Please click 'Next' to continue to Round 2.

## Time left to complete this page: 1:44

The computer determined that the payment round will be Round 7
Your total payoff in this round was $\mathbf{1 0 6 4}$ points
Please click 'Next' to continue to Part 4.

Results History
(Your Type - A)

| Round <br> Number | Period 1 <br> Bid | Period 1 <br> Winner | Period 1 <br> Payoff | Period 2 <br> Bid | Period 2 <br> Winner | Period 2 <br> Payoff | Total Payoff <br> (Period 1)+ <br> (5*Period 2) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 41.0 | You | 159 points | 46.0 | You | 154 points | 929 points |
| 9 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 8 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 7 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 6 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 5 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 4 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 3 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 2 | 41.0 | You | 159 points | 19.0 | You | 181 points | 1064 points |
| 1 | 28.0 | You | 172 points | 33.0 | You | 167 points | 1007 points |

## Part 4

## Time left to complete this page: 4:55

This Part is also a bidding task. There is only 1 trial of 1 round.

You have again been randomly matched with a participant

Both of you have 50 points to bid for a prize of 0 .

Your chances of winning are given by your share in the total bid by you and your match.

You will see if you Won or Lost.

Please insert your bid:
$\square$

Please press 'Next' to continue to the survey.

Next

## Survey

Time left to complete this page: 2:49

There are 6 options below. You can make further \$ earnings based on one of these.

Choose the one that you most prefer.

The outcome of your choice will be decided by a random number generator when applicable.

Select the option you most prefer:
Option 1: 50\% chance of $\$ 1.40$ and $50 \%$ chance of $\$ 1.40$Option 2: 50\% chance of $\$ 1.20$ and $50 \%$ chance of $\$ 1.80$Option 3: 50\% chance of $\$ 1.00$ and $50 \%$ chance of $\$ 2.20$Option 4: 50\% chance of \$0.80 and 50\% chance of \$2.60Option 5: 50\% chance of \$0.60 and 50\% chance of \$3.00Option 6: 50\% chance of \$0.10 and 50\% chance of \$3.50

## Survey

Time left to complete this page: 0:55

You chose Option 1.
Based on that, you earned \$1.40.

The options were:
Option 1: $50 \%$ chance of $\$ 1.40$ and $50 \%$ chance of $\$ 1.40$
Option 2: 50\% chance of $\$ 1.20$ and $50 \%$ chance of $\$ 1.80$
Option 3: 50\% chance of \$1.00 and 50\% chance of \$2.20
Option 4: 50\% chance of \$0.80 and 50\% chance of \$2.60
Option 5: 50\% chance of $\$ 0.60$ and $50 \%$ chance of $\$ 3.00$
Option 6: 50\% chance of $\$ 0.10$ and $50 \%$ chance of $\$ 3.50$

## Survey

Time left to complete this page: 2:50

Please answer the following questions.

A bat and a ball cost 22 dollars in total. The bat costs 20 dollars more than the ball. How many dollars does the ball cost?
$\square$
"If it takes 5 machines 5 minutes to make 5 widgets, how many minutes would it take 100 machines to make 100 widgets?" :
$\square$
In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how many days would it take for the patch to cover half of the lake? :
$\square$
Next

## Puzzle

Time left to complete this page: 2:56

Read the Instructions below to complete a puzzle on the next page.

You will be scored based upon the number of moves it takes you to finish. Completing the puzzle in fewer moves will earn you more money.

You will have 3 minutes to complete this puzzle.
You must complete the puzzle to earn any money. If the time runs out before you finish, you will get no payoff for the puzzle.
Plan your moves carefully before making them, as doing a move and then undoing it counts as two moves.
The object of the puzzle is to move all the disks from the leftmost peg 1 to the rightmost peg 3, so that the disks are arranged in the same size order, largest disk on the bottom, medium disk in the middle and smallest disk on top.

The rules are:

1. Only one disk can be moved from one peg to one other peg at a time.
2. A disk cannot be placed on a smaller disk.
3. Only the top disk on each peg can be moved.

Click the Next Button to complete the puzzle.

## Discs: 3 <br> Moves: 0 <br> $-0$

## Puzzle Result

You could not finish the game.
Your payoff from this is 0 points
Please press 'Next' to continue.

Next

## Survey

Time left to complete this page: 4:48

Please answer the following questions.

What is your age?
$\square$
What is your gender identity?
Male Female Transmale Transfemale Queer/Noncomforming Something else Prefer not to say

Please rate your level of agreement with the following statement (7 means highly agree):"Competition brings out the best in me":
$1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7$

Please rate your level of agreement with the following statement (7 means highly agree):"I love winning competitions irrespective of the value of the prize.":
$1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 7$

What was your main bidding strategy in Part 3?
I was trying to maximize my total expected payoff in every round
I was trying to maximize my probability of winning in each period
I was type A and I was trying to win in period 1 , so that rules do not change in period 2
I was type B and I was trying to win in period 1 , so that rules change in period 2
I was trying to have 50-50 chances of winning
I was trying to coordinate on low bids
I was bidding randomly
Other

Please elaborate on whatever you chose above, especially if you chose "Other":

Next

Your total payoff in points is 1454 points $=\mathbf{\$ 1 4 . 5 4}$.
The participation fee is $\$ 7.00$.

Thus, your total earning today is $\$ 21.54$

You will receive your payment within 24 hours.

## Thanks a lot for your participation.


[^0]:    *New York University Abu Dhabi (email: nishtha.sharma@nyu.edu).
    Acknowledgments - This paper has benefited from comments by John Duffy, Alex Imas, Rachel Kranton, Michael McBride, Maximilian Mihm, Ernesto Rueben, and Stergios Skaperdas. I am thankful for generous grants from the Center for Global Peace and Conflict Studies, the Initiative to End Family Violence Fellowship, the Kugelman Citizen Peacebuilding Research Fellowship, and the Department of Economics Graduate Student Fellowship at the University of California, Irvine.
    The Institutional Review Board at the University of California, Irvine approved this project.

[^1]:    ${ }^{2}$ Global evidence on systematic differences in time preferences exists (Falk et al., 2018), yet this threshold is strict and potentially unrealistic in most contexts. For example, a disadvantaged player may be more concerned about their future welfare than an advantaged player, yet the difference is unlikely to be as large as the theoretical requirement.
    ${ }^{3}$ Alternative specifications and modeling choices such as additive advantages, a difference in A and B's prizes of winning, or the marginal costs of effort and convex costs generate similar qualitative predictions as discussed in the theory section.

[^2]:    ${ }^{4}$ Such unconditional changes are relatively difficult but indeed possible. For example, Boisjoly et al. (2006) shows that white students randomly assigned to black roommates in college have greater empathy and lower racist attitudes. Recently, Dhar et al. (2022) found that childhood intervention discussing

[^3]:    ${ }^{7}$ The treatment table is given in Appendix B.

